skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Germain, Pierre"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2025
  2. Abstract We consider solutions of the Navier‐Stokes equations in 3d with vortex filament initial data of arbitrary circulation, that is, initial vorticity given by a divergence‐free vector‐valued measure of arbitrary mass supported on a smooth curve. First, we prove global well‐posedness for perturbations of the Oseen vortex column in scaling‐critical spaces. Second, we prove local well‐posedness (in a sense to be made precise) when the filament is a smooth, closed, non‐self‐intersecting curve. Besides their physical interest, these results are the first to give well‐posedness in a neighborhood of large self‐similar solutions of 3d Navier‐Stokes, as well as solutions that are locally approximately self‐similar. © 2023 Wiley Periodicals LLC. 
    more » « less
  3. This is the second in a pair of works which study small disturbances to the plane, periodic 3D Couette flow in the incompressible Navier-Stokes equations at high Reynolds number Re . In this work, we show that there is constant 0 > c 0 ≪ 1 0 > c_0 \ll 1 , independent of R e \mathbf {Re} , such that sufficiently regular disturbances of size ϵ ≲ R e − 2 / 3 − δ \epsilon \lesssim \mathbf {Re}^{-2/3-\delta } for any δ > 0 \delta > 0 exist at least until t = c 0 ϵ − 1 t = c_0\epsilon ^{-1} and in general evolve to be O ( c 0 ) O(c_0) due to the lift-up effect. Further, after times t ≳ R e 1 / 3 t \gtrsim \mathbf {Re}^{1/3} , the streamwise dependence of the solution is rapidly diminished by a mixing-enhanced dissipation effect and the solution is attracted back to the class of “2.5 dimensional” streamwise-independent solutions (sometimes referred to as “streaks”). The largest of these streaks are expected to eventually undergo a secondary instability at t ≈ ϵ − 1 t \approx \epsilon ^{-1} . Hence, our work strongly suggests, for all (sufficiently regular) initial data, the genericity of the “lift-up effect ⇒ \Rightarrow streak growth ⇒ \Rightarrow streak breakdown” scenario for turbulent transition of the 3D Couette flow near the threshold of stability forwarded in the applied mathematics and physics literature. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)